
In this lecture, I will introduce the idea of a system to which one applies signals.  
Almost any physical setup can take on a “system” view.  Engineers model the system 
using mathematics.  The main goal of system analysis is to be able predict its 
behaviour under different conditions.
One of the most useful mathematical tools to analyse and thus, predict, systems is 
the Laplace Transform.  This lecture will also introduce the theory of Laplace 
Transform and show how it may be used to model systems as transfer functions.



Up to now, we have been focusing on the processing of electrical signals.  In five 
short lectures, we have covered quite a lot of ground.  It is therefore time to review 
what you have learned so far.  Here are the TEN key teachings of what we have 
covered up to now:
1.Signals in time-domain and frequency-domain views – This is fundamental to 
signal processing, Depending on what you want to do with the signal, processing in 
one of the two domain will proof beneficial.  A good example is shown earlier when 
a sinewave is corrupt by large noise signal.  In time-domain, it looks a mess.  In 
frequency-domain, the energy is spread over the entire spectrum and therefore the 
sinewave is not “masked” by the noise. 
2.Any signal can be represented by weighted sum of sinusoids – This is the essence 
of Fourier transform, and it is how we convert from one domain to another.
3.Sinusoid as sine, cosine or exponential functions – Sinusoids form the “building 
blocks” of signals in frequency domain.  If you project a sinewave of one frequency 
onto another sinewave of a different frequency, no matter how close they are, the 
projection is zero.  This implies that the two sinewaves are “orthogonal” and they 
have nothing in common.  This is also why sinusoids form good building blocks.
4.Fourier Transform – converts a time-limited signal with finite energy from time-
domain to frequency-domain.



5. Periodic signal uses Fourier series in frequency domain – The fundamental 
frequency f0 = 1/T0, the period of the signal, and all other components are 
called harmonics, and they are integral multiples of f0.

6. Sampling theorem – One must sample at fs samples per second, which is at least 
TWICE that of the maximum frequency of the signal fmax:   fs ≥ 2*fmax.

7. Spectrum of a sample signal – When you sample a signal, the spectrum of the 
continuous time signal get repeated indefinitely at multiple of fs, i.e. at ±nfs, 
where n is all integers except 0: ±1, ±2 ….

8. Sampling a signal too slowly corrupts it through aliasing – If you use a sampling 
frequency fs which is lower than 2*fmax, aliasing, or spectral folding occurs and 
this will corrupt the signal in a way that you cannot go back to continuous time 
without error.

9. Rectangular windows – When extracting a portion of a signal to analyse, you are 
effectively multiplying the signal with a rectangular window. This results in 
leakages – signal energy leaked to its neighbouring frequency components.

10. Better to use window functions with smooth edges – Leakages can be reduced 
significantly by using other they of windowing functions, such as Hamming and 
Hanning windows.



Here is a general view of a SYSTEM. It processes signals from the input xj(t) and 
produces signals yk(t) at the output.
What we are attempting to do in this course module is to learn how to characterize 
and model the input-to-output relationship.  For example, we have already learn to 
calculate the relationship between output voltage and input voltage in an 
operational amplifier from your Year 1 Electronics 1 module.  
Generally, we use mathematics to model the system behaviour, and produce some 
form of equations relating yk(t) to xj(t).
Since we don’t really care what is exactly inside the system beyond this input-output 
relationship, we call this a “Black box” model of the system.



One of the most important property of any system is linearity.  A linear system 
exhibits two important properties: 1) additive: if x1 leads to y1, x2 leads to y2, then 
x1+x2 leads to y1+y2;   2) scaling: if x leads to y, kx leads to ky.
These two properties can be combined to form the general form of superposition, a 
principle that we have already covered extensively last year.
Many physical systems are NOT inherently linear.  For example, we have already 
considered that our ears are sensitive to sound volume in a logarithmic manner.  An 
incandescent light bulb produce light output as a quadratic function (i.e. square) of 
the input voltage.
However, we can usually approximate a non-linear system as linear over a range of 
signal, particularly if the range is small.  Therefore we often perform the so-called 
“small signal analysis”, restricting the signal to perturbation around a certain 
operating point.
We will examine this in Lab 3 in more details tomorrow.



Let us take this example from last year – one of a simple RC circuit consisting of a 
resistor R and a capacitor C. The output is the voltage y(t). The input is the current 
x(t) from the current source.
Remember that the voltage across the resistor is governed by Ohm’s law = R x(t) .
The voltage across the capacitor is    1/C x integral of the current x(t) from t= -∞ to t 
(i.e. now).
If we separate the integral term into two parts, one from t = -∞ to t= 0, then t=0 to 
t=t.  We get the final equation, which is effective a differential/integral equation 
where vc(0) is the voltage across the capacitor at time 0 (i.e. the initial condition).
This system has one input x(t) and one output y(t), and it is called a single-input, 
single-output (SISO) system.  
You can also have a MIMO system (e.g. you can buy a good wireless access point 
which uses many antenna and produces multiple wifi signals, and it is known as a 
MIMO system on the product).



Now it is important to appreciate that given a system, the output response is made 
up of two parts:  
1. The initial condition, which is also called the zero-input response.  This is the 

system behaviour before any input is applied (as if the input is grounded).
2. The zero-state response. This is the the system behaviour of the system to the 

input assuming that the internal state (such as the capacitor voltage) are all 
initially zero.



Another important classification of any systems is time-invariant vs time-variant.
A time-invariant system means that the characteristic is NOT change (invariant) over 
time.  It is fixed and no dependent on when you use the system, today, tomorrow or 
next year.
In this module, we only consider systems that are LINEAR, and TIME-INVARIANT, and 
call this LTI system for short.



There are other classification of systems. You should be familiar with them already.  
A system could be instantaneous – for example a circuit using only resistors, or 
dynamic with storage, for example a circuit with capacitor which stores voltages.
Another important one is causal and non-causal systems.  A causal system is one 
that is “idle” for t < 0, and only starts responding (turned ON) at t ≥ 0.  We mostly 
consider causal system in this module.
We have done continuous vs discrete time systems, analogue vs digital systems.
Invertible and noninvertible systems – don’t worry too much about this for now. 
Finally stable vs unstable systems – also don’t worry about this for now.



You are familiar with modeling systems with differential equations.  The circuit 
shown here was taken from DE1.3 Lecture 8, slide 11.  Assuming that all voltages 
and currents were 0 for t<0.  At t=0, the switch closes.  We are interested in find out 
vc(t) as a function of time.
You can easily write an equation as shown  by summing the voltage around the loop 
(Kirkoff’s voltage law – voltage around a loop in a circuit sums to zero).  This 
provides us with a differential equation, which can be solved for vc(t).

Similar, consider a mechanical system with a mass M, hanging from the ceiling with 
a damper with damping coefficient Kd and a spring with a Young’s coefficient Ks.  If 
you apply a force F(t) the mass, what is x(t)?  
Summing all the forces together in the vertical direction, we get the differential 
equation shown.  The gravitation force is proportional to d2x/dt2.   The force of the 
damper if proportional to dx/dt.  The force on the spring is proportional to x(t) itself.  

Although modeling systems as differential equation works, solving ODE is a bit 
tedious.  Laplace transform is a method to solve ODEs without pain!



Before we consider Laplace transform theory, let us put everything in the context of 
signals being applied to systems.
If we take a time-domain view of signals and systems, we have the top left diagram.  
The input x(t) is a function of time (i.e. a waveform you see on a scope), and the 
system is modeled as ODEs.  Alternatively you may also model the time-domain 
system through its response to an impulse at the input.  We will be covering impulse 
response in a later lecture.  The system response to an impulse is known as 
“impulse response” and is usually represented as h(t).  In time-domain analysis, you 
get y(t) either by solving the ODEs or you could derive y(t) from x(t) and h(t) through 
an operation known as “convolution”.  This is again something that will be covered 
later in this module.
However, if you operate in the frequency domain (from now on, I will drop the 
hyphen), we take the Fourier transform of the input signal:   x(t) è X(w).  We then 
model the system with its frequency response H(w).   The output (in the frequency 
domain)  Y(w) is given by   Y(w) = X(w) x H(w), a simple multiplication.
In other words, the frequency response H(w) is a model of how the system passes 
(or suppresses) different frequency components in the signal X(w).  This is exactly 
the process whereby you adjust your model phone playing music to emphasize low 
frequencies (bass) to get stronger beats in disco music, or emphasize higher 
frequencies (treble) to gain more clarity in classical music.



Laplace Transform is in someway similar to Fourier Transform.  However it is more 
general, and arguably more powerful.
It converts differential equations in the time domain into algebraic equations in 
another domain with a complex Laplace variable s.  Let us call this the s-domain.
The mathematical definition of the general Laplace Transform (also called bilateral 
Laplace Transform) is:

For this course, we assume that the signal and the system are both causal, i.e. x(t) = 
0 for all t < 0.  Therefore we get the equation shown in the slide, where the limits of 
integration is from 0 and NOT -∞.

Similar to Fourier domains, we can transform input signal x(t)  to the Laplace or s-
domain as X(s), and we can model the system in the s-domain using its response 
H(s).  This is also called the Transfer Function.    If you known X(s) and H(s), then the 
output in the s-domain Y(s) = H(s) X(s) – very similar to the Fourier analysis we did 
before.

We will consider the relationship (similarity) between Fourier transform and Laplace 
transform later.  For now, you can regard Fourier transform is a special case of 
Laplace transform.  So Laplace is more general.

L [x(t)] = X (s) = x(t)e−st dt
−∞

∞
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Before we go any further, let us consider the Laplace transforms of interesting 
signals and functions.  
First, you must remember that Laplace transform, just like Fourier, obeys the law of 
linearity – it is a linear tranform.
Now let us consider the Laplace transform of an impulse d(t).  This simple 
integration shows that:
This is similar to the case
of Fourier transform shown in Lecture 3, slide  7.
The Laplace transform of a unit step signal u(t) is 1/s.  Again you can derive this 
through simple integration. Remember that e-st è 0 when t è∞.
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Now consider Laplace transform of a causal exponential signal eat u(t). (Note that 
multiplying eat by u(t) makes the signal causal because u(t) chops off everything 
where t < 0.
Again simple integration yields the result you see.
From this, we can also derive the Laplace transform for a causal cosine signal at 
frequency w0.



We can also derive the Laplace transform for a function.  For example, what is the LT 
of a differentiation function d/dt?
As shown here, the result is also pretty simple. x(0) is the initial value of x at t = 0.
If x(0) = 0, i.e. zero initial condition, then L(dx(t)/dt) = s X(s). This is a very important 
result.



Similarly, we can compute the Laplace transform of the integration function.  This is 
slightly more complicated.  

We first express the integration of x(t) as g(t):

This leads to:

If we now take Laplace transform on both sides, we get:

Therefore LT of an integrator is the same as multiplying the input X(s) by 1/s in the s-
domain.

g(t) = x(τ
τ=0

t
∫ )dτ

x(t) = dg(t)
dt

,    and   g(0) = 0

L[x(t)]= L[ !g(t)]= sG(s)− g(0) = sG(s)



Now we are ready to generalize.  Assuming zero initial condition, L[dx/dt] = sX(s), it 
follows that L[d2x/dt2] is s2X(s) ….. L[dkx/dtk] is sk X(s).

So let us take our mechanical system previously considered in Slide 10.  The second-
order differential equation:

Can be converted to the Laplace s-domain (zero initial condition) as:

Re-arrange this a bit, and express this as  OUTPUT/INPUT in the s-domain, we get:

This is a very important results.  H(s) is known as Transfer function, and it 
characterizes the system in the s-domain as a 2nd order polynomial function in the 
complex Laplace variable s.  This is an algebraic equation.  Since Y(s) = H(s) X(s), a 
simple multiplication, we can predict the output by simple algebraic calculations. No 
more fiddling with differential equations!

M  !!x(t)+ Kd !x(t)+ Ksx(t) = F (t)

Ms2X (s)+ KdsX (s)+ KsX (s) = F (s)

H (s) = X (s)
F (x)

=
1

Ms2 + Kds+ Ks


